DUBBIO sulla dimostrazione della PERMANENZA DEL SEGNO per le successioni reali

Messaggioda PitTagora » 18/11/2019, 19:26

Ciao!
La dimostrazione é effettivamente semplice poiché sfrutta la definizione di limite di successioni e quella spiegata dal professore del mio corso é questa:

Caso : $ l < +\infty $
Prendo $\epsilon \in (0,l)$ , ad esempio $\epsilon = l/2$.
Per definizione di limite:

$ \exists ñ \in \aleph : \forall n \in \aleph $ $ n>ñ$ si ha $|an - l| < \epsilon $ cioé $l - \epsilon < an < l+ \epsilon$

e questo lo dimostra poiché $l-\epsilon > 0$.

Il mio dubbio é sul perché sia possibile scegliere un $\epsilon \in (0,l)$ quando nella definizione di limite c'é scritto $\forall \epsilon > 0$.
La condizione non dovrebbe essere verificata per ogni epsilon > 0 e cioé senza "restrizioni"?
Scusate per la domanda probabilmente ingenua ma non so darmi risposta.
PitTagora
Starting Member
Starting Member
 
Messaggio: 1 di 4
Iscritto il: 18/11/2019, 19:04

Re: DUBBIO sulla dimostrazione della PERMANENZA DEL SEGNO per le successioni reali

Messaggioda gugo82 » 18/11/2019, 20:18

Che vuol dire che una condizione vale $AA epsilon >0$?
Sono sempre stato, e mi ritengo ancora un dilettante. Cioè una persona che si diletta, che cerca sempre di provare piacere e di regalare il piacere agli altri, che scopre ogni volta quello che fa come se fosse la prima volta. (Freak Antoni)
Avatar utente
gugo82
Moderatore globale
Moderatore globale
 
Messaggio: 22808 di 22958
Iscritto il: 12/10/2007, 23:58
Località: Napoli

Re: DUBBIO sulla dimostrazione della PERMANENZA DEL SEGNO per le successioni reali

Messaggioda PitTagora » 18/11/2019, 20:29

Vuol dire per ogni epsilon maggiore di 0. Ma questo non significa che dovrebbe essere vero anche per un epsilon possibilmente maggiore di l?
PitTagora
Starting Member
Starting Member
 
Messaggio: 2 di 4
Iscritto il: 18/11/2019, 19:04

Re: DUBBIO sulla dimostrazione della PERMANENZA DEL SEGNO per le successioni reali

Messaggioda gugo82 » 18/11/2019, 20:45

PitTagora ha scritto:Vuol dire per ogni epsilon maggiore di 0.

E grazie al cavolo…

PitTagora ha scritto:Ma questo non significa che dovrebbe essere vero anche per un epsilon possibilmente maggiore di l?

Ovvio, ma ciò non c’entra.

Facciamo un esempio classico.
“Ogni uomo è mortale” vale per ogni uomo. Che vuol dire?
Sono sempre stato, e mi ritengo ancora un dilettante. Cioè una persona che si diletta, che cerca sempre di provare piacere e di regalare il piacere agli altri, che scopre ogni volta quello che fa come se fosse la prima volta. (Freak Antoni)
Avatar utente
gugo82
Moderatore globale
Moderatore globale
 
Messaggio: 22809 di 22958
Iscritto il: 12/10/2007, 23:58
Località: Napoli

Re: DUBBIO sulla dimostrazione della PERMANENZA DEL SEGNO per le successioni reali

Messaggioda PitTagora » 18/11/2019, 20:53

Che preso un qualsiasi uomo esso é mortale?
Sicuramente sto dicendo di nuovo una cosa ovvia
PitTagora
Starting Member
Starting Member
 
Messaggio: 3 di 4
Iscritto il: 18/11/2019, 19:04

Re: DUBBIO sulla dimostrazione della PERMANENZA DEL SEGNO per le successioni reali

Messaggioda gugo82 » 18/11/2019, 21:38

Certo.
Puoi prendere un qualsiasi uomo, ad esempio Gigi Marzullo, ed affermare che “Gigi Marzullo è mortale”.
Nel tuo caso, invece di uomo = Gigi Marzullo, hai preso $epsilon = l/2$.

E, per capire l’insensatezza della tua obiezione, te la ripropongo rispetto all’esempio classico:
PitTagora ha scritto:Il mio dubbio é sul perché sia possibile scegliere Gigi Marzullo, o una persona italiana, quando nella proprietà c'é scritto “ogni uomo”.
La condizione non dovrebbe essere verificata per ogni uomo e cioé senza "restrizioni"?

Capisci ora?
Sono sempre stato, e mi ritengo ancora un dilettante. Cioè una persona che si diletta, che cerca sempre di provare piacere e di regalare il piacere agli altri, che scopre ogni volta quello che fa come se fosse la prima volta. (Freak Antoni)
Avatar utente
gugo82
Moderatore globale
Moderatore globale
 
Messaggio: 22810 di 22958
Iscritto il: 12/10/2007, 23:58
Località: Napoli

Re: DUBBIO sulla dimostrazione della PERMANENZA DEL SEGNO per le successioni reali

Messaggioda 8f570619fe456e7656e0 » 19/11/2019, 00:30

Salve.
Chiamiamo L il limite finito e supponiamolo qui positivo (analogo è il caso di L negativo).
La definizione di limite ti lascia la scelta di ε (e, per ogni scelta, avrai una determinata ñ), ma la massima ε che puoi prendere per dimostrare questo teorema è ε = L, che, applicando la definizione di limite, dà, da una certa n in poi:

 $L - L < a_n$ .

Se prendessi valori di ε più grandi non riusciresti a dimostrare la permanenza del segno, perché L -  ε sarebbe negativo. Però abbiamo appena visto che per un intorno di raggio L (e, a maggior ragione, per tutti gli intorni più piccoli) si ha, da una certa n in poi:

$0< a_n$ ,

da cui si deduce la permanenza del segno in un intorno di raggio massimo L.
8f570619fe456e7656e0
 

Re: DUBBIO sulla dimostrazione della PERMANENZA DEL SEGNO per le successioni reali

Messaggioda PitTagora » 19/11/2019, 20:52

Buona sera a tutti quelli che mi hanno risposto.
Penso di aver capito! Effettivamente rileggendo la definizione di limite capisco che dà la possibilità di scelta di un $\epsilon$ dato che comunque prendo un ñ che dipende da esso. (Scusate la sprecisione).
Grazie!
PitTagora
Starting Member
Starting Member
 
Messaggio: 4 di 4
Iscritto il: 18/11/2019, 19:04

Re: DUBBIO sulla dimostrazione della PERMANENZA DEL SEGNO per le successioni reali

Messaggioda gugo82 » 19/11/2019, 21:00

Grazie ren183 per la riscrittura della dimostrazione, ma il dubbio di OP non era su questo. :wink:
Sono sempre stato, e mi ritengo ancora un dilettante. Cioè una persona che si diletta, che cerca sempre di provare piacere e di regalare il piacere agli altri, che scopre ogni volta quello che fa come se fosse la prima volta. (Freak Antoni)
Avatar utente
gugo82
Moderatore globale
Moderatore globale
 
Messaggio: 22814 di 22958
Iscritto il: 12/10/2007, 23:58
Località: Napoli


Torna a Analisi matematica di base

Chi c’è in linea

Visitano il forum: Back_To_Uni, Gabrio, Google Adsense [Bot], Matteo3213d, Salvy e 48 ospiti