Disuguaglianza di Poincarè Wirtinger

Messaggioda fillippodepaolis94 » 14/12/2019, 22:04

Ho un dubbio nella dimostrazione di questa disuguaglianza. Per provarla, nella dimostrazione si prova che
$\int_{0}^{1}u'^2dx\geq\pi^2\int_{0}^{1}u^2dx$
Quindi, considera la funzione $f_\lambda(u,\xi)=\frac{\xi^2-\lambda^2u^2}{2}$ e cerchiamo il minimo della funzione integrale $I(u)=\int_{0}^{1}f_\lambda(u(x),u'(x))dx$, dove $inf_{u\in X}I(u)=m_\lambda$, dove $X={u\in C^1([0,1]):u(0)=u(1)=0}$.
Inoltre $\xi\rightarrow f_\lambda(u,\xi)$ è convessa.
Usando l'equazione di Eulero-Lagrange
\begin{equation*}
u''+\lambda^2u=0 \qquad u'^2+\lambda^2u^2=costante
\end{equation*}
Qui la parte che non capisco:
-se $\lambda\leq \pi$ allora $m_\lambda=0$ e ciò implica la disuguaglianza;
Se $\lambda<\pi$ allora solo $u_0=0$ minimizza il problema e se $\lambda = \pi$ ci sono infinite soluzioni.
Se $\lambda\geq \pi $ etc.
Non capisco la prima parte: come può affermare che se $\lambda\leq \pi$ allora $m_\lambda=0$ e ciò implica la disuguaglianza direttamente?
fillippodepaolis94
Starting Member
Starting Member
 
Messaggio: 8 di 20
Iscritto il: 27/05/2019, 19:20

Re: Disuguaglianza di Poincarè Wirtinger

Messaggioda pilloeffe » 15/12/2019, 15:50

Ciao fillippodepaolis94,

Calcolo delle Variazioni.
Potresti dare un'occhiata qui e qui.
pilloeffe
Cannot live without
Cannot live without
 
Messaggio: 3367 di 3512
Iscritto il: 07/02/2017, 15:45
Località: La Maddalena - Modena

Re: Disuguaglianza di Poincarè Wirtinger

Messaggioda dissonance » 16/12/2019, 09:26

Risolvi la prima equazione differenziale, è facile, è un oscillatore armonico. Hai anche una condizione al bordo (che hai omesso di scrivere nel testo, e senza la quale la disuguaglianza è chiaramente falsa; prendi ad esempio \(u(x)=1\)).
dissonance
Cannot live without
Cannot live without
 
Messaggio: 15885 di 16007
Iscritto il: 24/05/2008, 19:39
Località: Nomade

Re: Disuguaglianza di Poincarè Wirtinger

Messaggioda fillippodepaolis94 » 16/12/2019, 12:01

Ok, proverò così. Scusa se chiedo ma anche ricontrollando il libro ho solo che la funzione $u$ sta in $X$ come definito sopra, qual'è l'altra informazione che dici che non ho scritto?
fillippodepaolis94
Starting Member
Starting Member
 
Messaggio: 9 di 20
Iscritto il: 27/05/2019, 19:20

Re: Disuguaglianza di Poincarè Wirtinger

Messaggioda dissonance » 16/12/2019, 12:32

Che \(u\in X\). Non lo hai scritto. Si capisce dal testo, ma non lo hai scritto; la disuguaglianza che dici vale solo per \(u\in X\).


Esattamente quello è il punto: le soluzioni di \(u''+\lambda^2u=0\) sono combinazioni lineari di seni e coseni, ma devi anche verificare le condizioni al bordo, e questo è possibile solo se \(\lambda = \ldots\)

Altrimenti, l'unica soluzione è quella nulla.
dissonance
Cannot live without
Cannot live without
 
Messaggio: 15892 di 16007
Iscritto il: 24/05/2008, 19:39
Località: Nomade

Re: Disuguaglianza di Poincarè Wirtinger

Messaggioda fillippodepaolis94 » 17/12/2019, 15:48

Giusto, perdonami per la disattenzione, grazie mille.
fillippodepaolis94
Starting Member
Starting Member
 
Messaggio: 11 di 20
Iscritto il: 27/05/2019, 19:20

Re: Disuguaglianza di Poincarè Wirtinger

Messaggioda dissonance » 17/12/2019, 16:31

Non ti preoccupare, mica ti devo perdonare niente. Piuttosto, sei sicuro di avere ben chiaro cosa succede?
dissonance
Cannot live without
Cannot live without
 
Messaggio: 15896 di 16007
Iscritto il: 24/05/2008, 19:39
Località: Nomade


Torna a Analisi superiore

Chi c’è in linea

Visitano il forum: Nessuno e 5 ospiti