Re: problema con quesito funzione parametrica

Messaggioda Bokonon » 14/01/2020, 22:00

Quella è la fase successiva. Per prima cosa devi sincerarti che $g(x)>0$ SEMPRE per $p<=0$
Poi si passa al caso $p>0$
Devi procedere con logica e dimostrare tutto.
Avatar utente
Bokonon
Senior Member
Senior Member
 
Messaggio: 1920 di 1976
Iscritto il: 25/05/2018, 20:22

Re: problema con quesito funzione parametrica

Messaggioda lori nobili » 14/01/2020, 22:14

Non basta studiare la derivata? Studiando la derivata guardi dove è crescente e dove e decrescente. Cresce per $p<= 0$ mentre per $p>0 $ha un minimo in radice di p.Essendo g(0)=0 quando $p<=0$ è sempre maggiore di 0. Mente nell' altro caso fai i calcoli e ti viene $0<p<2^(-2/3)$. Intersecando viene $p<2^(-2/3)$. Vorrei capire il tuo ragionamento per vedere altre vie possibili :)
lori nobili
Starting Member
Starting Member
 
Messaggio: 13 di 16
Iscritto il: 07/01/2020, 18:14

Re: problema con quesito funzione parametrica

Messaggioda lori nobili » 14/01/2020, 22:15

Bokonon ha scritto:Quella è la fase successiva. Per prima cosa devi sincerarti che $g(x)>0$ SEMPRE per $p<=0$
Poi si passa al caso $p>0$
Devi procedere con logica e dimostrare tutto.

Non basta studiare la derivata? Studiando la derivata guardi dove è crescente e dove e decrescente. Cresce per $p<= 0$ mentre per $p>0 $ha un minimo in radice di p.Essendo g(0)=0 quando $p<=0$ è sempre maggiore di 0. Mente nell' altro caso fai i calcoli e ti viene $0<p<2^(-2/3)$. Intersecando viene $p<2^(-2/3)$. Vorrei capire il tuo ragionamento per vedere altre vie possibili :)
lori nobili
Starting Member
Starting Member
 
Messaggio: 14 di 16
Iscritto il: 07/01/2020, 18:14

Re: problema con quesito funzione parametrica

Messaggioda Bokonon » 14/01/2020, 23:18

lori nobili ha scritto:Vorrei capire il tuo ragionamento per vedere altre vie possibili :)

Vorrei capire da dove arriva tutta questa cafonaggine quando hai appena scritto:
lori nobili ha scritto:Essendo g(0)=0


E prima ancora perle come:
lori nobili ha scritto:E quindi ho fatto $3p<1$ ovvero $p<1/3$. Solo che non risulta. Cosa ho sbagliato?


lori nobili ha scritto: Beh quando $p<0$ viene $x^3+3px+1 $mentre per $p=0$ $x=-1$


Adieu
Avatar utente
Bokonon
Senior Member
Senior Member
 
Messaggio: 1921 di 1976
Iscritto il: 25/05/2018, 20:22

Re: problema con quesito funzione parametrica

Messaggioda lori nobili » 15/01/2020, 08:59

Bokonon ha scritto:
lori nobili ha scritto:Vorrei capire il tuo ragionamento per vedere altre vie possibili :)

Vorrei capire da dove arriva tutta questa cafonaggine quando hai appena scritto:
lori nobili ha scritto:Essendo g(0)=0


E prima ancora perle come:
lori nobili ha scritto:E quindi ho fatto $3p<1$ ovvero $p<1/3$. Solo che non risulta. Cosa ho sbagliato?


lori nobili ha scritto: Beh quando $p<0$ viene $x^3+3px+1 $mentre per $p=0$ $x=-1$


Adieu

Allora praticamente: quando $p<=0$ il termine della x è sempre positivo e quindi la funzione per le x positive è sempre positive. Per p>0 però cosa potrei dire? p è negativo e quindi la funzione sarà maggiore o minore di 0 a tratti per le x positive. Studiando la derivata che sarebbe $3x^2-3p$ vedo che per $p<=0$ cresce sempre,mentre per p>0 cresce per le $x>sqrt(p)$ e per le $x<-sqrt(p)$. Quindi decresce tra i due valori. Quindi per i $p<=0$ la funzione e sempre crescente e visto che $g(0)=1$ è maggiore di 0 per le x positive. Mentre se p>0 se verifico che il minimo è positivo allora per le x>0 la funzione sarà positiva anch'essa. Nello scorso messaggio non sono stato ben chiaro forse,scusami..
lori nobili
Starting Member
Starting Member
 
Messaggio: 15 di 16
Iscritto il: 07/01/2020, 18:14

Precedente

Torna a Analisi matematica di base

Chi c’è in linea

Visitano il forum: cext104, Gigi33, Sergio, TroppiDubbi e 48 ospiti