Testo nascosto, fai click qui per vederlo
$r=2\ r_0 \sin((\pi-2\theta)/2)=2\ r_0\cos\theta$
$\text{d}r=-2\ r_0\sin\theta\ \text{d}\theta $
$L=2\ \theta\ r$
$\text{d}q=\sigma \ L \ \text{d}r$
$\text{d}V=k \ (\text{d}q) /r$
$V=\int_{\pi/2}^{0} \text{d}V \ \text{d}\theta $
$V=-\frac{\sigma\ r_0}{\pi \ \epsilon_0}\int_{\pi/2}^{0} \theta \sin\theta \ \text{d}\theta=\frac{\sigma \ r_0} {\pi \ \epsilon_0}$
$\text{d}r=-2\ r_0\sin\theta\ \text{d}\theta $
$L=2\ \theta\ r$
$\text{d}q=\sigma \ L \ \text{d}r$
$\text{d}V=k \ (\text{d}q) /r$
$V=\int_{\pi/2}^{0} \text{d}V \ \text{d}\theta $
$V=-\frac{\sigma\ r_0}{\pi \ \epsilon_0}\int_{\pi/2}^{0} \theta \sin\theta \ \text{d}\theta=\frac{\sigma \ r_0} {\pi \ \epsilon_0}$
@ ingres
- Codice:
\arccos(\theta)
$\arccos(\theta)$