spazio dei polinomi

Messaggioda cri98 » 15/06/2018, 00:14

nello spazio$ R_(<=2)[x]$ dei polinomi di grado al più 2, si consideri il sottospazio

$W={p(x)in R_<=2[X]: p prime(0)=p prime(1)=p prime prime(0)-p prime(1)=0} $
e sia Z tale che$ R_(<=2)=W o+ Z$
A)dimZ=2
B)dimZ=1
C)dimZ=0
D)dimW=0
E)nessuna delle altre risposte

per risolvere l'esercizio pensavo di considerare
$p(x)= ax^2+bx+c$
$p prime(x)=2ax+b$
$p prime prime (x)= 2a $

come devo andare avanti?
grazie!
cri98
New Member
New Member
 
Messaggio: 69 di 92
Iscritto il: 30/04/2018, 17:18

Re: spazio dei polinomi

Messaggioda Cantor99 » 15/06/2018, 01:15

Beh porrei le condizioni che $W$ richiede
- $p'(0)=b=0$
- $p'(1)=2a=0$
- $p''(0)=p'(1) <=> 2a=b$
Quindi $W={cx : c\in\RR}$

E dunque $dim(W)=1$ e $dim(Z)=3-1=2$

(Spero di non aver fatto errori di conto)
Cantor99
Junior Member
Junior Member
 
Messaggio: 300 di 313
Iscritto il: 06/08/2017, 11:52
Località: Dragoni

Re: spazio dei polinomi

Messaggioda cri98 » 15/06/2018, 09:34

Cantor99 ha scritto:Beh porrei le condizioni che $ W $ richiede
- $ p'(0)=b=0 $
- $ p'(1)=2a=0 $
- $ p''(0)=p'(1) <=> 2a=b $
Quindi $ W={cx : c\in\RR} $

E dunque $ dim(W)=1 $ e $ dim(Z)=3-1=2 $

(Spero di non aver fatto errori di conto)


ciao,Cantor99
quando poni le condizioni di W ed ottieni che
$ pprime (1)=2a=0 $
andando ad effettuare la sostituzione con 1 all'interno della derivata prima di p non dovrei ottenere che:

$ p prime(1)=2ax+b$

$p prime(1)=2a(1)+b=2a+b$

$pprime (1)=2a+b=0 $

come fai a calcolare la dim(W) che viene uguale a 1? e la dim(Z) in cui hai 3-1?

Grazie!
cri98
New Member
New Member
 
Messaggio: 70 di 92
Iscritto il: 30/04/2018, 17:18

Re: spazio dei polinomi

Messaggioda Magma » 15/06/2018, 09:47

Nella riga sopra c'è anche scritto che $b=0$ :roll:
Magma
Senior Member
Senior Member
 
Messaggio: 1068 di 1135
Iscritto il: 03/09/2015, 14:15

Re: spazio dei polinomi

Messaggioda cri98 » 15/06/2018, 11:46

Magma ha scritto:Nella riga sopra c'è anche scritto che $b=0$ :roll:


giusto hai ragione
cri98
New Member
New Member
 
Messaggio: 72 di 92
Iscritto il: 30/04/2018, 17:18

Re: spazio dei polinomi

Messaggioda cri98 » 15/06/2018, 11:50

come faccio a calcolare la dim(w) che viene uguale a 1? è la dim(Z) in cui hai 3-1?
cri98
New Member
New Member
 
Messaggio: 73 di 92
Iscritto il: 30/04/2018, 17:18

Re: spazio dei polinomi

Messaggioda Magma » 15/06/2018, 11:52

$dim(W):=|mathcalB|$, dove $mathcalB$ è una base di $W$.
Magma
Senior Member
Senior Member
 
Messaggio: 1073 di 1135
Iscritto il: 03/09/2015, 14:15

Re: spazio dei polinomi

Messaggioda cri98 » 15/06/2018, 14:10

puoi farmi un esempio?
come ottengo la dim(Z)?

Grazie!
cri98
New Member
New Member
 
Messaggio: 74 di 92
Iscritto il: 30/04/2018, 17:18

Re: spazio dei polinomi

Messaggioda Magma » 15/06/2018, 14:21

Hai trovato i vettori che generano $W$? Se sono l.i. allora sono una base, altrimenti togli quelli che sono C. L. degli altri.
Una volta trovata la base, conta quanti vettori ci sono: questa è la dimensione.
Magma
Senior Member
Senior Member
 
Messaggio: 1076 di 1135
Iscritto il: 03/09/2015, 14:15

Re: spazio dei polinomi

Messaggioda cri98 » 15/06/2018, 16:04

Magma ha scritto:Hai trovato i vettori che generano $ W $? Se sono l.i. allora sono una base, altrimenti togli quelli che sono C. L. degli altri.
Una volta trovata la base, conta quanti vettori ci sono: questa è la dimensione.


ciao Magma,
non so come fare a trovare i vettori che generano W da dove le ricavo?
sulla definizione di base ci sono

grazie per la risposta :smt023
scusami ma sono duro di testa
cri98
New Member
New Member
 
Messaggio: 77 di 92
Iscritto il: 30/04/2018, 17:18

Prossimo

Torna a Geometria e algebra lineare

Chi c’è in linea

Visitano il forum: Nessuno e 12 ospiti