Il limite e' questo, Wolfram dice che il risultato dovrebbe essere 1/2

1) ho capito che $ ln(n+3/n) $ puo' essere $ ln(n/n+3/n) $ quindi $ ln(1+3/n) $ che e' equivalente a $ 3/n $ per la proprieta $ ln(1+f(x)) $ con $ x->0 $ e' equivalente a $ f(x) $
2) $ (4^sin(4/n^3) -1 )$ ~ $ ln(4)sin(4/n^3) $ che a sua volta puo' essere $ ln(4)(4/n^3) $ perche' $ sin(f(x)) $ ~ $ f(x) $ quando $ x -> 0 $
3) $ log4(1+3/n^2) $ ~ $ 3/ln(4)*n^2 $
ma poi mi rimane $ ((4+(8/n^4))^(1/2) - 2) $ che se fosse $ ((4+(8/n^4))^(1/2) - 1) $ sarebbe ~ a $ 1/2*(8/n^4) $ , ma non lo e' quindi non so come procedere e mi viene sempre 0/0.
Grazie