Si definisce per \(s \in \mathbb{R} \) lo spazio di Sobolev frazionario \[H^s = H^s (\mathbb{R}^n) = \left\{ u \in \mathcal{S}' \, : \, \int_{\mathbb{R}^n} (1 + |\xi|^2)^s |\hat{u}(\xi)|^2 \, d \xi < \infty \right\} \]ove con \(\mathcal{S}' \) e' indicato lo spazio delle distribuzioni temperate mentre con \(\hat{\cdot} \) indico la trasformata di Fourier. Al solito \[ L^1 (\mathbb{R}^n ) = \left\{f \text{ misurabile} \, : \, \int_{\mathbb{R}^n} |f| \, dx < \infty \right\}. \]
Problema: mostrare che \( L^1 \not\subset H^{-n/2}\).