$lim_{nrightarrowinfty}sqrt{n^6+n^2+1}-nsqrt{n^4+2}=$

Limite in forma indeterminata.
Razionalizzando si ottiene

$lim_{n
ightarrowinfty}sqrt{n^6+n^2+1}-nsqrt{n^4+2}=$

$lim_{n
ightarrowinfty}(sqrt{n^6+n^2+1}-sqrt{n^6+2n^2})=$

$lim_{n
ightarrowinfty}frac{sqrt{n^6+n^2+1}-sqrt{n^6+2n^2}}{sqrt{n^6+n^2+1}+sqrt{n^6+2n^2}}cdot sqrt{n^6+n^2+1}+sqrt{n^6+2n^2}=$

$ lim_{n
ightarrowinfty}frac{n^6+n^2+1-(n^6+2n^2)}{sqrt{n^6+n^2+1}+sqrt{n^6+2n^2}} =$

$lim_{n
ightarrowinfty}frac{-n^2+1}{sqrt{n^6cdot(1+frac{1}{n^4}+frac{1}{n^6})}-sqrt{n^6cdot(1+frac{2}{n^4})}} =$

$lim_{n
ightarrowinfty}frac{n^2cdot(1-frac{1}{n^2})}{n^3cdot(sqrt{1+frac{1}{n^4}+frac{1}{n^6}}+sqrt{1+frac{2}{n^4}})} = 0$

$lim_{nrightarrowinfty} n^2 sin(frac{1}{n}) sqrt{1-cos(frac{2}{n})}=$

Il limite si presenta in forma indeterminata ($inftycdot 0$).

Si ha

$lim_{n
ightarrowinfty} n^2 sin(frac{1}{n}) sqrt{1-cos(frac{2}{n})}=$

$lim_{n
ightarrowinfty} frac{sin(frac{1}{n})}{frac{1}{n}} frac{sqrt{1-cosfrac{2}{n}}}{sqrt{(frac{1}{n})^2}}=$

$lim_{n
ightarrowinfty} frac{sin(frac{1}{n})}{frac{1}{n}} sqrt{frac{1-cos(frac{2}{n})}{frac{1}{4} (frac{2}{n})^2}}$

Posto allora $frac{1}{n} = t$ e $frac{2}{n}=k$, risulta

$lim_{n
ightarrowinfty} frac{sin(frac{1}{n})}{frac{1}{n}} 2 sqrt{frac{1-cos(frac{2}{n})}{(frac{2}{n})^2}} =$

$2cdotlim_{t
ightarrow 0}frac{sin t}{t}cdotlim_{k
ightarrow 0} sqrt{frac{1-cos k}{k^2}}=2cdot 1cdotfrac{1}{sqrt{2}}=sqrt{2}$

$lim_{nrightarrowinfty}sqrt{n^2+n}cdot[1-cos(frac{1}{n})]$

Il limite forma indeterminata$+inftycdot 0$.

Ricordando il limite notevole $lim_{x
ightarrow 0}frac{1-cos x}{x^2}=frac{1}{2}$
, si ha

$lim_{n
ightarrowinfty}sqrt{n^2+n}cdot[1-cos(frac{1}{n})] =$

$lim_{n
ightarrowinfty}frac{sqrt{n^2+n}}{n^2}cdotfrac{[1-cos(frac{1}{n})]}{frac{1}{n^2}} =$

Posto ora $frac{1}{n}=t Rightarrow t
ightarrow 0 ext{per} n
ightarrowinfty$
si ottiene

$lim_{n
ightarrowinfty} frac{sqrt{n^2cdot(1+frac{1}{n})}}{n^2}cdotlim_{t
ightarrow 0}frac{1-cos t}{t^2}=$

$frac{1}{2}cdotlim_{n
ightarrowinfty}frac{|n|cdotsqrt{1+frac{1}{n}}}{n^2}=$

$frac{1}{2}cdot lim_{n
ightarrowinfty}frac{sqrt{1+frac{1}{n}}}{|n|} =$

$frac{1}{2}cdot 0 = 0$

$lim_{xto+infty}(sqrt(x^2-3x+1)-sqrt(x^2+x-2))$

Limite in forma indeterminata $\infty-\infty$

$\lim_{x \rightarrow +\infty} \sqrt{x^2-3x+1}-\sqrt{x^2+x-2} =$$= \lim_{x \rightarrow +\infty} \frac{x^2-3x+1-x^2-x+2}{\sqrt{x^2-3x+1}+\sqrt{x^2+x-2}} =$$\lim_{x \rightarrow +\infty} \frac{-4x+3}{x\cdot\Big(\sqrt{1-\frac{3}{x}+\frac{1}{x^2}}+\sqrt{1+\frac{1}{x}-\frac{2}{x^2}}\Big)} =$$=\lim_{x \rightarrow +\infty} \frac{-4+\frac{3}{x}}{\sqrt{1-\frac{3}{x}+\frac{1}{x^2}}+\sqrt{1+\frac{1}{x}-\frac{2}{x^2}}} = -2$

$lim_{xto-infty}((x-sqrt(x^2+x+3))/(sqrt(2-3x)-1))$

Limite in forma indeterminata $\frac{\infty}{\infty}$

$\lim_{x \rightarrow -\infty} \frac{x-\sqrt{x^2+x+3}}{\sqrt{2-3x}-1} = \text{[x}< 0\text{]} =\lim_{x \rightarrow -\infty} \frac{x-\sqrt{x^2} \sqrt{1+\frac{1}{x}+\frac{3}{x^2}}}{\sqrt{-x} \sqrt{3-\frac{2}{x}}} =$$\lim_{x \rightarrow -\infty} \frac{x\cdot\Big(1+\sqrt{1+\frac{1}{x}+\frac{3}{x^2}}\Big)}{\sqrt{-x}\cdot \sqrt{3-\frac{2}{x}}} =\lim_{x \rightarrow -\infty} -\frac{\sqrt{-x}\cdot\Big(1+\sqrt{1+\frac{1}{x}+\frac{3}{x^2}}\Big)}{\sqrt{3+\frac{2}{x}}} =$$= -\infty$

$lim_{xto-infty}((x^6-sqrt(1-x^5))/(3+2sqrt(4x^10+x^2)))$

Limite in forma indeterminata $\frac{\infty}{\infty}$

$\lim_{x \rightarrow -\infty} \frac{x^6-\sqrt{1-x^5}}{3+2\sqrt{4x^{10}+x^2}} = \lim_{x \rightarrow -\infty} \frac{x^6 \Big(1-\frac{1}{x^6}\cdot\sqrt{1-x^5}\Big)}{3+2\sqrt{x^{10}\cdot\Big(4+\frac{1}{x^5}\Big)}} =$$\lim_{x \rightarrow -\infty} \frac{x^6\cdot\Big(1-\sqrt{\frac{1}{x^{12}}-\frac{1}{x^7}}\Big)}{3+2 |x^5|\sqrt{4+\frac{1}{x^5}}} = [ x < 0] =$$= \lim_{x \rightarrow -\infty} \frac{x^6\cdot \Big(1-\sqrt{\frac{1}{x^{12}}-\frac{1}{x^7}}\Big)}{-x^5\cdot\Big(\frac{-3}{x^5}+\sqrt{4+\frac{1}{x^5}}\Big)} = +\infty$

$lim_{xto 3}(5/(x^2-x-6)-2/(x^2-4x+3))$

Limite in forma indeterminata $\infty – \infty$

$\lim_{x \rightarrow 3} (\frac{5}{x^2-x-6}-\frac{2}{x^2-4x+3}) =$$\lim_{x \rightarrow 3} [\frac{5}{(x-3)(x+2)}-\frac{2}{(x-3)(x-1)}] =$$\lim_{x \rightarrow 3} [\frac{1}{x-3}\cdot (\frac{5}{x+2}-\frac{2}{x-1})] =$$\lim_{x \rightarrow 3} [\frac{1}{x-3}\cdot \frac{5x-5-2x-4}{(x+2)(x-1)}] =$$\lim_{x \rightarrow 3} \frac{3x-9}{(x-3)(x+2)(x-1)} =$$\lim_{x \rightarrow 3} \frac{3}{(x+2)(x-1)} = \frac{3}{10}$

$lim_{xto 1}((2x-sqrt(5-x))/(x-sqrt(x)))$

Limite in forma indeterminata $\frac{0}{0}$

$\lim_{x\rightarrow 1} \frac{2x-\sqrt{5-x}}{x-\sqrt{x}} = \lim_{x\rightarrow 1} \frac{(2x-\sqrt{5-x}) (x+\sqrt{x})}{(x-\sqrt{x}) (x+\sqrt{x})} =$$\lim_{x\rightarrow 1} (x+\sqrt{x})\cdot \lim_{x\rightarrow 1} \frac{2x-\sqrt{5x}}{x (x-1)} = 2\cdot \lim_{x\rightarrow 1} \frac{(2x-\sqrt{5-x}) (2x+\sqrt{5-x})}{x(x-1)(2x+\sqrt{5-x})}=$$2\cdot \lim_{x\rightarrow 1} \frac{4x^2-5+x}{x(x-1)(2x+\sqrt{5-x})} = 2\cdot \lim_{x\rightarrow 1} \frac{4x+5}{x (2x+\sqrt{5-x})} = \frac{9}{2}$

$lim_{x rightarrow -1} frac{x+sqrt{x^2+2x+2}}{sqrt{3+2x}-1}$

Limite in forma indeterminata $\frac{0}{0}$

$\lim_{x \rightarrow -1} \frac{x+\sqrt{x^2+2x+2}}{\sqrt{3+2x}-1} =$

$= \lim_{x \rightarrow -1} \frac{(x+\sqrt{x^2+2x+2}) (x-\sqrt{x^2+2x+2})}{(\sqrt{3+2x}-1) (x-\sqrt{x^2+2x+2})} =$

$\lim_{x \rightarrow -1} \frac{x^2-x^2-2x-2}{\sqrt{3+2x}-1}\cdot \lim_{x \rightarrow -1} \frac{1}{x-\sqrt{x^2+2x+2}} =$

$=-\frac{1}{2}\cdot\lim_{x \rightarrow -1} \frac{-2 (\sqrt{3+2x}+1)}{2} = 1$