Svolgimento:
 $x/sqrt(2)-x^2/(2-sqrt(2))+(x^2-xsqrt(2))/(2+sqrt(2))+2(x^2-2)/sqrt(2)=1/(1-sqrt(2))$
 razionalizzando
 $xsqrt(2)/2-x^2(2+sqrt(2))/2+(x^2-xsqrt(2))(2-sqrt(2))/2+(2x^2sqrt(2-4sqrt(2))/2)=-1-sqrt(2)$
 e riducendo a forma intera
 $xsqrt(2)-2x^2-x^2sqrt(2)+2x^2-x^2sqrt(2)-2xsqrt(2)+2x+2x^2sqrt(2)-4sqrt(2)=-2-2sqrt(2)$
 e riducendo i termini simili
 $2x-xsqrt(2)=-2+2sqrt(2)$
 ovvero
 $x(2-sqrt(2))=2(sqrt(2)-1)$
 da cui
 $x=2(sqrt(2)-1)/(2-sqrt(2))$
 e razionalizzando
 $x=2(sqrt(2)-1)(2+sqrt(2))/2$
 cioe’
 $x=2(2sqrt(2)+2-2-sqrt(2))/2=2sqrt(2)/2=sqrt(2)$. 
$x/sqrt2-x^2/2-sqrt2+x(x-sqrt2)/2+sqrt2+2(x^2-2)/sqrt2=1/1-sqrt2$
2 Dicembre 2008
 
            
ho provato a sostitutire la soluzione $x=\sqrt(2)$ nell’equazione id partenza e non risulta un’uguaglianza, ma si ottiene $1=\sqrt(2)$ il problema credo che riguardi la visualizzazione in html. in particolare il termine alla destra dell’uguale dovrebbe essere: 1/(1-radice(2))
Ciao qualkuno mi sa spiegare perchè nello “svolgimento” (prima eqauzione) è stato fatto cosi? perchè si porta sotto il radicale e lo si sottrare a uno? grazie