Logo di Matematicamente.it by SkuolaNet
  • HOME
  • LEZIONI
  • MANUALI
  • TEST
  • ESERCIZI
  • APPUNTI
  • ECDL
  • MATURITA
  • FORUM
  • VIDEO LEZIONI
  • SHOP
  • APPROFONDIMENTI
  • TESI
  • TESINE
  • INFORMATICA
  • DIDATTICA
  • CULTURA
  • FORMULARIO
  • DIZIONARIO
  • GIOCHI
  • SCACCHI
  • MAGAZINE

Autore: Alfredo Bochicchio

$2y^2-3y-5$

$2y^2-3y-5$
somma=-3
prodotto=-10
i due numeri sono -5 e +3
$2y^2-5y+3y-5$
$y(2y-5)3(y-5)$
$(y+3)(2y-5)$
Postato in Scomposizione in fattoriLascia un commento

$6y^2+11y-2$

$6y^2+11y-2$
somma=+11
prodotto=-12
i due numeri sono +12 e -1
$6y^2+12y-y-2$
$6y(y+2)-1(y+2)$
$(6y+1)(y+2)$
Postato in Scomposizione in fattoriLascia un commento

$3a^2-14a-5$

$3a^2-14a-5$
somma=-14
prodotto=-15
i due numeri sono +15 e -1
$3a^2+15a-a-5$
$3a(a+5)-1(a+5)$
$(3a-1)(a+5)$
Postato in Scomposizione in fattoriLascia un commento

$6t^2-7t+1$

$6t^2-7t+1$
somma=-7
prodotto=+6
i due numeri sono -6 e -1
$6t^2-6t-t+1$
$6t(t-1)-1(t-1)$
$(6t-1)(t-1)$
Postato in Scomposizione in fattoriLascia un commento

$3y^2-5y-8

$3y^2-5y-8
somma=-5
prodotto=-24
i due numeri sono 8 e -3
$3y^2-3y+8y-8$
$3y(y-1)+8(y-1)$
$(3y+8)(y-1)$
Postato in Scomposizione in fattoriLascia un commento

$12+13a+3a^2$

$12+13a+3a^2$
$3a^2+13a+12$
somma=13
prodotto=+36
i due numeri sono 9 e 4
3a^2+9a+4a+12$
$3a(a+3)+4(a+3)$
$(3a+4)(a+3)$
Postato in Scomposizione in fattoriLascia un commento

$7y+4y^2-2$

$7y+4y^2-2$
$4y^2+7y-2$
somma=+7
prodotto=-8
i due numeri sono -8 e +1
$4y^2-8y+y-2$
$4y(y-2)1(y-2)$
$(4y-1)(y-2)
Postato in Scomposizione in fattori1 commento

$2x^2-7x+6$

$2x^2-7x+6$
somma=-7
prodotto=+12
i due numeri sono -4 e -3
$2x^2-4x-3x+6$
$2x(x-2)-3(x-2)$
$(2x-3)(x-2)$
Postato in Scomposizione in fattoriLascia un commento

$2t^2-3t-2$

$2t^2-3t-2$
somma=-3
prodotto=-4
i due numeri sono -4 e -1
$2t-4t+t-2$
$2t(t-2)1(t-2)$
$(2t+1)(t-2)$
Postato in Scomposizione in fattoriLascia un commento

$[4(x-1/2y)(x+1/2y)]^2-(2x-3y)^2(2x+3y)^2-16y^2(2x-y)(2x+y)+(-4y^2)^2$

$[4(x-1/2y)(x+1/2y)]^2-(2x-3y)^2(2x+3y)^2-16y^2(2x-y)(2x+y)+(-4y^2)^2$
$[4(x^2-1/4y^2)]^2-(4x^2-9y^2)^2-16y^2(4x^2-y^2)+16y^4$
$[4x^2-y^2]^2-16x^4+72x^2y^2-81y^4-64x^2y^2+16y^4+26y^4$
$16x^4-8x^2y^2+y^4-16x^4+8x^2y^2-49y^4$
$-48y^4$
Postato in Espressioni letterali7 commenti

$[(1/2ab-(1/4a+b)^2+(b+1/4a)(-1/4a+b)]a+(b+1/2a)^3-b^2(3/2a+b)$

$[(1/2ab-(1/4a+b)^2+(b+1/4a)(-1/4a+b)]a+(b+1/2a)^3-b^2(3/2a+b)$
$[1/2ab-1/16a^2-1/2ab-b^2+b^2-1/16a^2]a+b^3+3/2ab^2+3/4a^2b+1/8a^3-3/2ab^2-b^3$
$-2/16a^3+3/4a^2b+1/8a^3$
$3/4a^2b$
Postato in Espressioni letteraliLascia un commento

$[(1/2x+2/3y+z)^2-(1/2+2/3y-z)^2+1/3yz]^2-3yz^2(4x+3y)$

$[(1/2x+2/3y+z)^2-(1/2+2/3y-z)^2+1/3yz]^2-3yz^2(4x+3y)$
$[1/4x^2+4/9y^2+z^2+2/3xy+xz+4/3yz-1/2x^2-4/9y^2-z^2-2/3xy+xz+4/3yz+1/3yz]^2-12xyz^2-9y^2z^2$
$[2xz+3yz]^2-12xyz^2-9y^2z^2$
$4x^2z^2+12xyz^2+9y^2z^2-9y^2z^2-12xyz^2$
$rx^2z^2$
Postato in Espressioni letterali2 commenti

$[(3ab)^3-(-5ab)^2xxab-(2+ab)^7:(8a^2b^2)^2]:(-3/4a^3b^2)^3$

$[(3ab)^3-(-5ab)^2xxab-(2+ab)^7:(8a^2b^2)^2]:(-3/4a^3b^2)^3$
$[27a^3b^3-25a^3b^3-2a^3b^3]:(-27/64a^9b^6)$
$0:(-27/64a^9b^6)$
$0$
Postato in Espressioni letteraliLascia un commento

$(a^4-3a^3+a^2-3a):(a+1)$

Determina se i seguenti polinomi sono divisibili per i binomi indicati a fianco
$a^4-3a^3+a^2-3a$        $a+1$   
$(a^4-3a^3+a^2-3a):(a+1)$
$P(-1)$
$(-1)^4-3(-1)^3+(-1)^2-3(-1)$
$1-3(-1)+1+3$
$1+3+1+3$
Postato in Divisione tra polinomi e regola di RuffiniLascia un commento

$(x^2-5x+4):(x+2)$

Determina se i seguenti polinomi sono divisbili per i binomi indicati a fianco
x^2-5x+4        x+2
$(x^2-5x+4):(x+2)$
$P(-2)$
$(-2)^2-5(-2)+4$
$4+10+4$
$x^2-5x+4$ non è divisibile per $x+2$
Postato in Divisione tra polinomi e regola di RuffiniLascia un commento

$(x^2-5x+4):(x-1)$

Determina se i seguenti polinomi sono divisbili per i binomi indicati a fianco
x^2-5x+4        x-1
$(x^2-5x+4):(x-1)$
$P(+1)$
$1-5(1)+4$
$1-5+4$
$0$
$x^2-5x+4$ è divisbile per $x-1$
Postato in Divisione tra polinomi e regola di RuffiniLascia un commento

$(a^4-2a^2x^2+x^4):(a-2x)$

Calcola il resto delle seguenti divisioni senza eseguirle
$(a^4-2a^2x^2+x^4):(a-2x)$
R=$P(+2x)$
R=$(2x)^4-2(2x)^2x^2+x^4$
R=$16x^4-2(4x^2)x^2+x^4$
R=$16x^4-8x^2xxx^2+X^4$
R=$16x^4-8x^4+x^4$
R=$9x^4$
Postato in Divisione tra polinomi e regola di RuffiniLascia un commento

$(a^6-3a^3b^3+b^6):(a+b)$ Teorema Resto

Calcola il resto delle seguenti divisioni senza eseguirle
$(a^6-3a^3b^3+b^6):(a+b)$
R=$P(-b)$
R=$(-b)^6-3(-b)^3b^3+b^6$
R=$b^6-3(-b^3)(b^3)+b^6$
R=$b^6+3b^3(b^3)+b^6$
R=$b^6+3b^3$
Postato in Divisione tra polinomi e regola di Ruffini3 commenti

$(a^4-a^3b+a^2b^2-2ab^3+4b^4):(a-2b)$ Teorema Resto

Calcola il resto delle seguenti divisioni senza eseguirle
$(a^4-a^3b+a^2b^2-2ab^3+4b^4):(a-2b)$
R=$P(+2b)$
R=$(2b)^4-(2b)^3(b)+(2b)^2(b^2)-2(2b)b^3+4b^4$
R=$16b^4-8b^3(b)+4b^2(b^2)-4b(b^3)+4b^4$
R=$16b^4-8b^4+4b^4-4b^4+4b^4$
R=$(16-8+4-4+4)b^4$
R=$12b^4$
Postato in Divisione tra polinomi e regola di Ruffini1 commento

$(6z^3-3az^2+2a^2z-a^3):(z-2a)$

Calcola il resto delle seguenti divisioni senza eseguirle
$(6z^3-3az^2+2a^2z-a^3):(z-2a)$
R=$P(+2a)$
R=$6(+2a)^3-3a(+2a)^2+2a^2(2a)-a^3$
R=$6(8a^3)-3(4a^3)+4a^3-a^3$
R=$48a^3-12a^3+4a^3-a^3$
R=$(48-12+4-1)a^3$
R=$39a^3$
Postato in Divisione tra polinomi e regola di RuffiniLascia un commento

$(x^3-2ax^2-a^2x+2a^3):(x-2a)$ Teorema Resto

Calcola il resto delle seguenti divisioni senza eseguirle
$(x^3-2ax^2-a^2x+2a^3):(x-2a)$
R=$P(+2a)$
R=$(+2a)^3-2a(2a)^2-a^2(2a)+2a^3$
R=$8a^3-2a(4a^2)-2a^3+2a^3$
R=$8a^3-8a^3-2a^3+2a^3$
R=$0$
Postato in Divisione tra polinomi e regola di RuffiniLascia un commento

$(x^6+7x^3-8):(x-1)$ Teorema Resto

Calcola il resto delle seguenti divisioni senza eseguirle
$(x^6+7x^3-8):(x-1)$
R=$P(+1)$
R=$+1^6+7(1)-8$
R=$(+1+7-8)$
R=$0$
Postato in Divisione tra polinomi e regola di RuffiniLascia un commento

$(b^5-b^3+b^2-1):(b-1)$ Teorema Resto

Calcola il resto delle seguenti divisioni senza eseguirle
$(b^5-b^3+b^2-1):(b-1)$
R=$P(+1)$
R=$+1^5+(-1)^3+1^2-1$
R=$1-1+1-1$
R=$0$
Postato in Divisione tra polinomi e regola di RuffiniLascia un commento

$(2t^4-3t^2+4t-16):(t-2)$ Teorema Resto

Calcola il resto delle seguenti divisioni senza eseguirle
$(2t^4-3t^2+4t-16):(t-2)$
R=$P(+2)$
R=$2(+2)^4-3(+2)^2+4(+2)-16$
R=$2(16)-3(4)+8-16$
R=$+32-12+8-16$
R=$12$
Postato in Divisione tra polinomi e regola di RuffiniLascia un commento

$(a^3+8a^2-8a+1):(a+2)$ Teorema del resto

Calcola il resto delle seguenti divisioni senza eseguirle
$(a^3+8a^2-8a+1):(a+2)$
R=$P(-2)$
R=$(-2)^3+8(-2)^2-8(-2)+1$
R=$-8+8(+4)+16+1$
R=$-8+32+16+1$
R=$+41$
Postato in Divisione tra polinomi e regola di RuffiniLascia un commento

$(6b^2-5b+3):(b+3)$ Teorema del resto

Calcola il resto delle seguenti divisioni senza eseguirle
$(6b^2-5b+3):(b+3)$
R=$P(-3)$
R=$(6(-3)^2-5(-3)+3$
R=$6(+9)+15+3$
R=$54+15+3$
R=$72$
Postato in Divisione tra polinomi e regola di RuffiniLascia un commento

$(3a^3-4a^2+5a-1):(a-2)$ Teorema del resto

Calcola il resto delle seguenti divisioni senza eseguirle
$(3a^3-4a^2+5a-1):(a-2)$
R=$P(+2)$
R=$3(+2)^3-4(+2)^2+5(+2)-1$
R=$3(+8)-4(+4)+10-1$
R=$24-16+10-1$
R=$17$
Postato in Divisione tra polinomi e regola di RuffiniLascia un commento

$(4y^3-5y+6):(y+1)$ Teorema del resto

Calcola il resto delle seguenti divisioni senza eseguirle
$(4y^3-5y+6):(y+1)$
R=$P(-1)$
R=$4(-1)^3-5(-1)+6$
R=$4(-1)+5+6$
R=$-4+5+6$
R=$7$
Postato in Divisione tra polinomi e regola di RuffiniLascia un commento

$(2x+9x^2+2x^3-11):(x+1)$ Teorema del resto

Calcola il resto delle seguenti divisioni senza eseguirle
$(2x+9x^2+2x^3-11):(x+1)$
R=$P(-1)$
R=$[2(-1)+9(-1)^2+2(-1)^3-11)$
R=$[-2+9(+1)+2(-1)-11]$
R=$[-2+9-2-11]$
R=$-6$
Postato in Divisione tra polinomi e regola di RuffiniLascia un commento

$(3x^3-2x^2-4x-1):(x+1)$ Teorema del resto

Calcola il resto delle seguenti divisioni senza eseguirle
$(3x^3-2x^2-4x-1):(x+1)$
R=$P(-1)$
R=$[3(-1)^3-2(-1)^2-4(-1)-1]$
R=$[3(-1)-2(1)+4-1]$
R=$[-3-2+4-1]$
R=$-2$
Postato in Divisione tra polinomi e regola di RuffiniLascia un commento

$(3y^2-2y-5):(y-2)$ Teorema del resto

 
Calcola il resto delle seguenti divisioni senza eseguirle
 
$(3y^2-2y-5):(y-2)$
R=$P(+2)$
R=$[3(2)^2-2(2)-5]$
R=$[3(4)-4-5]$
R=$[12-4-5]$
R=$3$
Postato in Divisione tra polinomi e regola di RuffiniLascia un commento

$(3x^3+7x^2+4x+4):(x+2)$

Calcola il resto delle seguenti divisioni senza eseguirle

 

$(3x^3+7x^2+4x+4):(x+2)$

 

R=$P(-2)$

 

R=$3(-2)^3+7(-2)^2+4(-2)+4$

 

R=$3(-8)+7(4)+(-8)+4$

 

R=$-24+28-8+4$

 

R=$0$ 

Postato in Divisione tra polinomi e regola di RuffiniLascia un commento

$(y^2+4y-8):(y-2)$ Teorema del resto

Calcola il resto delle seguenti divisioni senza eseguirle

 

$(y^2+4y-8):(y-2)$

 

R=$P(+2)$

 

R=$[(+2)^2+4(+2)-8)]$

 

R=$[4+8-8]$

 

R=$4$ 

Postato in Divisione tra polinomi e regola di RuffiniLascia un commento

$(x^2+2z-16):(z+5)$ Teorema del Resto

Calcola il resto delle seguenti divisioni senza eseguirle 
 
$(x^2+2z-16):(z+5)$
R=$P(-5)$
R=$[(-5)^2+2(-5)-16]$
R=$[25+(-10)-16]$
R=$[25-10-16]$
R=$-1$
Postato in Divisione tra polinomi e regola di Ruffini1 commento

esercizi riconoscimento prodotti notevoli e scomposizione

$5a^2xy-20abxy+20b^2xy$
$5xy(a^2-4ab+4b^2)$
$5xy(a+2b)^2$
$20a^3+45ab^2-60a^2b$
$5a(4a^2+9b^2-12ab)$
$5a(2a+3b)^2$
Postato in Scomposizione in fattori3 commenti

riconoscimento prodotti notevoli e scomposizione

$2ax^2+8ay^2+8axy$
$2a(x^2+4y2+4xy)$
$2a(x+2y)^2$
$7a^2+28a+28$
$7(a^2+4a+4)$
$7(a+2)^2$
Postato in Scomposizione in fattori3 commenti

scomposizione polinomi$-8x^2y^3-10x^3y^2+6x^4y^3$

$a(x^2+2y+z^3)+2b(x^2+2y+z^3)-c(x^2+2y+z^3)$
$(X^2+2y+z^3)(+2b+a-c)$
$(a+b)^3-2(a+b)^5$
$(a+b)^3[1-2(a+b)^2]$
Postato in Scomposizione in fattoriLascia un commento

scomposizione polinomi$7(x^2+y^2)+3(x^2y^2)-a(x^2y^2)$

$7(x^2+y^2)+3(x^2y^2)-a(x^2y^2)$
$(x^2y^2)(7+3-a)$
$(x^2y^2)(10-a)$
$15x(a-b)-5y(a-b)+(a-b)$
$(a-b)(15x-5y+1)$
Postato in Scomposizione in fattori1 commento

scomposizione polinomi$3x(a-b)+y(a-b)+a-b$

$3x(a-b)+y(a-b)+a-b$
$(a-b)(3x+y+1)$
$-(y-2x)+a(y-2x)-2b(y-2x)$
$(y-2x)(-1+1-2b)$
Postato in Scomposizione in fattori1 commento

scomposizione polinomi$6x^2z-12x^2yz^2+18xy^2z^2$$-8x^2y^3-10x^3y^2+6x^4y^3$

$6x^2z-12x^2yz^2+18xy^2z^2$
$6xyz(y-2xz+3yz)$
$-8x^2y^3-10x^3y^2+6x^4y^3$
$2x^2y^2(-4y-5x+3x^2y)$
Postato in Scomposizione in fattori2 commenti

scomposizione polinomi$32x^2y^2-20x^4y^2+16xy^4$ $3a^2b^4+27ab^3-24a^3b^2$

$3a^2b^4+27ab^3-24a^3b^2$
$3ab^2(ab^2+9b-8a^2)$
 
 
 
$32x^2y^2-20x^4y^2+16xy^4$
$4xy^2(8x-5x^3+4y^2)$ 
Postato in Scomposizione in fattoriLascia un commento

Raccolgimento a fottore comune totale

1)$7abc-21ab^2c^3-14ab^3c+7a^2b^3c^2$
$7abc(1-3bc^2-2b^2+ab^2c)$
2)$5x^3y^2-10xy^3+20x^3y^3$
$5xy^2(x^2-2y+4x^2y)$ 
Postato in Scomposizione in fattoriLascia un commento

Raccolgimento a fattore comune totale

1)$3ab+9a^2$=3a(bxx3a)$

2)$9x^4-6x^3=3x^3(3x-2)$

3)$y^4xx1/2y=y(y^3xx1/2)$

4)$5a^3+15a^2=5a^2(axx3)$

  

Postato in Scomposizione in fattoriLascia un commento

$[(-ab^2)^2+1/3a^2b^4]:(ab^2)^2-(1/2a^2b)^2:[(3/4ab)^2(-a)^2]$

$[(-ab^2)^2+1/3a^2b^4]:(ab^2)^2-(1/2a^2b)^2:[(3/4ab)^2(-a)^2]$
$[a^2b^4+1/3a^2b^4]:(a^2b^4)-(1/4a^4b^2):[9/16a^4b^2]$
$[4/3a^2b^4]:(a^2b^4)-4/9$
$4/3-4/9$
$8/9$
Postato in Espressioni letterali2 commenti

${[(-1/4a^2b^4)^2-(+1/2ab^2)^4-(-ab^2)^4]:(1/2a^2b)^2}^2:(2b)^3$

${[(-1/4a^2b^4)^2-(+1/2ab^2)^4-(-ab^2)^4]:(1/2a^2b)^2}^2:(2b)^3$
${(1/16a^7b^8)-(1/16a^4b^8)-a^4b^8]:(1/4a^4b^2)}^2:(8b^3)$
${-a^4b^8:(1/4a^4b^2)}^2:(8b^3)$
${-4b^6}^2:(8b^3)$
$16b^2:8b^3$
$2b^9$
Postato in Espressioni letterali3 commenti

${[-12/5a^2b^2xx(-25/6a^3b^3)]:(5ab)^2}:[2/5xx(ab)^6:a^3b^3]$

${[-12/5a^2b^2xx(-25/6a^3b^3)]:(5ab)^2}:[2/5xx(ab)^6:a^3b^3]$
${10a^5b^5:(25a^2b^2)}:[2/5xx(a^6b^6:a^3b^3]$
$10/25a^3b^3:2/5a^3b^3$
$2/5a^3b^3:2/5a^3b^3$
$1$
Postato in Espressioni letteraliLascia un commento

$[-x^3y^3+(1/2xy)^3-4x^2yxx(1/4xy^2)]:[5xx1/2xyxx(-xy)^2]$

$[-x^3y^3+(1/2xy)^3-4x^2yxx(1/4xy^2)]:[5xx1/2xyxx(-xy)^2]$
$[-x^3y^3+(1/8x^3y^3)-4x^2yxx(1/4xy^2)]:[5xx1/2xyxx(x^2y^2)]$
$[-x^3y^3+1/8x^3y^3-x^3y^3]:[5/2x^3y^3]$
$[-15/8x^3y^3]:[5/2x^3y^3]$
$-3/4$
Postato in Espressioni letterali2 commenti

$[2xy(-1/4x^2y)-(2x^2y)^3:(8x^3y)]:(1/4x^2+1/2x^2)$

$[2xy(-1/4x^2y)-(2x^2y)^3:(8x^3y)]:(1/4x^2+1/2x^2)$
$[-1/2x^3y^2-(8x^6y^3):(8x^3y)]:(3/4x^2)$
$[-3/2x^3y^2]:(3/4x^2)$
$-2xy^2$
Postato in Espressioni letterali1 commento

$[(1/4ab^2)^3:(1/8a^2b^2]^2:[(1/2a^4b^3):(2/5a^2b)]$

$[(1/4ab^2)^3:(1/8a^2b^2]^2:[(1/2a^4b^3):(2/5a^2b)]$
$[(64a^3b^6):(1/8a^2b^2)]^2:[5/4a^2b^2]$
$[1/8ab^4]^2:[5/4a^2b^2]$
$[1/64a^2b^8]:[5/4a^2b^2]$
$1/80b^6$
Postato in Espressioni letteraliLascia un commento

$[(3/2a^3b)^2:(-3/4ab)]^2:(-2/3a^6b^2)+(5/2a^4-3a^3xx(-1/4a)$

$[(3/2a^3b)^2:(-3/4ab)]^2:(-2/3a^6b^2)+(5/2a^4-3a^3xx(-1/4a)$
$[(9/4a^6b^2):(-3/4ab)]^2:(-2/3a^6b^2)+(5/2a^4+3/4a^4)$
$[-3a^5b]^2:(-2/3a^6b^2)+13/4a^4$
$[9a^10b^2]:(-2/3a^6b^2)+13/4a^4$
$27/2a^4+13/4a^4$
$-41/4a^4$
Postato in Espressioni letterali1 commento

Navigazione articoli

Articoli meno recenti
Articoli seguenti
  • Videolezioni di matematica, fisica e chimica

  • Ultime dal Forum

    • Basi e polinomi.

      26 Agosto 2021, 1 Messaggi

    • Problema 15 dal libro Halliday Resnick

      26 Agosto 2021, 0 Messaggi

    • Matrice associata ad una forma bilineare

      25 Agosto 2021, 0 Messaggi

    • legge di snell

      25 Agosto 2021, 0 Messaggi

  • Manuali scolastici Creative Commons

    • Matematica C3 Algebra 1

      Algebra per il primo anno delle superiori

    • Matematica C3 Algebra 2

      Algebra per il secondo anno delle superiori

    • Matematica C3 Geometria Razionale

      Geometria per il biennio delle superiori

    • Dal problema al modello v.1

      Matematica per il terzo anno delle superiori

    • Dal problema al modello v.2

      Matematica per il quarto superiore

    • Dal problema al modello v.3

      Matematica per il quinto superiore

    • Fisica sperimentale

      Fisica per le scuole superiori

    • Fisica per le scuole superiori

      Fisica per le scuole superiori

    • Gestione di progetto

      Gestione di progetto e organizzazione di impresa

    • Vedi la collana completa di manuali >>>

  • Sudoku Difficile

         1  9
          573
       7     
     1      8
     9  457  
    645 2    
      9 5    
          92 
      82   4 
  • Chi siamo
  • Privacy Policy
  • Cookie Policy
  • Condizioni d’uso
  • Collaboratori
  • Winners

Skuola.net News è una testata giornalistica iscritta al Registro degli Operatori della Comunicazione.
Registrazione: n° 20792 del 23/12/2010. ©2000—2025 Skuola Network s.r.l. Tutti i diritti riservati. — P.I. 10404470014.